

ELIZADE UNIVERSITY, ILARA-MOKIN, ONDO STATE

FACULTY OF ENGINEERING DEPARTMENT OF COMPUTER ENGINEERING

SECOND SEMESTER EXAMINATION, 2018/2019 ACADEMIC SESSION

COURSE TITLE: FUZZY LOGIC AND PROGRAMMING

COURSE CODE: ECE 534

EXAMINATION DATE: JULY 16, 2019

COURSE LECTURERS: Prof. A. I. Oluwaranti/Mr. Isaac Elesemoyo

HOD's SIGNATURE

TIME ALLOWED: 3 HOURS

INSTRUCTIONS:

- 1. ANSWER QUESTION **ONE** AND ANY OTHER THREE <u>ONLY</u>.
- 2. SEVERE PENALTIES APPLY FOR MISCONDUCT, CHEATING, POSSESSION OF UNAUTHORIZED MATERIALS DURING EXAM.
- 3. YOU ARE **NOT** ALLOWED TO BORROW ANY WRITING MATERIALS DURING THE EXAMINATION.

ELIZADE UNIVERSITY, ILARA-MOKIN, ONDO STATE

FACULTY OF ENGINEERING DEPARTMENT OF COMPUTER ENGINEERING

SECOND SEMESTER EXAMINATION, 2018/2019 ACADEMIC SESSION

COURSE TITLE: FUZZY LOGIC AND PROGRAMMING

COURSE CODE: ECE 534

EXAMINATION DATE: JULY 16, 2019

COURSE LECTURERS: Prof. A. I. Oluwaranti/Mr. Isaac Elesemoyo

HOD's SIGNATURE

TIME ALLOWED: 3 HOURS

INSTRUCTIONS:

- 1. ANSWER QUESTION ONE AND ANY OTHER THREE ONLY.
- 2. SEVERE PENALTIES APPLY FOR MISCONDUCT, CHEATING, POSSESSION OF UNAUTHORIZED MATERIALS DURING EXAM.
- 3. YOU ARE **NOT** ALLOWED TO BORROW ANY WRITING MATERIALS DURING THE EXAMINATION.

Question 1[Compulsory]

Fuzzy logic membership function graph can be represented either as Triangular, Trapezoidal, Gaussian, Bell and Sigmoid. Write out the equation for finding membership function in each case and draw their [15 marks] diagrammatic representation on the graph sheet provided.

Question 2

The graph in Figure 1 shows the fuzzy sets A (blue) and B (red).

The gr	[5 montes]	
i	Write the set expression of the two sets	[5 marks]
1.		[2 marks]
ii.	Find the union of the two sets (A U B)	
iii.	Find the intersection of the two sets $(A \cap B)$	[2 marks]
111.		[2 marks]
iv.	Find the product of the two sets (AB)	
	Find the cross product of the two sets (A x B)	[4 marks]
V.	ring the cross product of the two sets (1712)	•

Question 3

.

- Discuss the following concepts.
 - i. Dilation
 - ii. Concentration
 - iii. Intensification

iv. Normalization b. Given the fuzzy set $A = \{0/1, 0.5/2, 0.8/3, 1.0/4, 0.7/5, 0.3/6, 0.0/7\}$ find, [2 marks] i. DIL(A) [2 marks] ii. CON(A) [3 marks]

iii. INT(A)

iv. NORM(A)

Question 4

- Explain what you understand by the following concepts in Fuzzy logic.
 - i. Membership function
 - ii. Support of a fuzzy set
 - iii. Crossover point
 - iv. Fuzzy Singleton

v. Level Sets

[5 marks]

[5 marks]

[3 marks]

A Japanese company wants to produce an Air Conditioning System, that will combine Humidity Level in a room to the temperature level as inputs and the effect will be on the speed of the fan of the air conditioner. You have been consulted to help derive a fuzzy rule based system that will map the humidity level and temperature level to the control of the Fan. Given that the Set of the TEMPERATURE is {LOW, MODERATE} which translate to 16-22.5°C and 22-28°C respectively and HUMIDITY is {DRY, NOTTOODRY, SUITABLE, NOT_TOO_WET, WET} which translates to 0-21%, 20-43%, 42-54%, 53-75% and 70-100% respectively and the control of the fan result in SPEED set of {STOP, SLOW, MEDIUM, FAST}. Write out the rules to perform this fuzzy operation.

Question 5

- a. Discuss the following concept as related to fuzzy logic
 - i. Subset in fuzzy logic
 - ii. Union of two fuzzy sets
 - iii. Intersection of two fuzzy sets
 - iv. Set product in fuzzy logic
 - v. Power set in fuzzy Logic

[5 marks]

Figure 2: Fuzzy logic graph 1

b. Consider the graphical illustration in figure 2 showing the representation of the fuzzy set Z. Find:

i.	$\mu(z)$	[2 marks]
ii.	Complement of Z	[2 marks]
iii.	Cardinality of Z	[2 marks]
iv.	0.5level of Z	[2 marks]
٧.	$Z_{0.55}$	[2 marks]

Question 6

b. Explain with example the concept of fuzzy logic. [4 marks]

c. Compare and contrast Fuzzy logic and the following

- i. Multi-valued logic
- ii. Probability
- iii. Boolean Logic

iv. Set Theory [8 marks]

d. List three areas where fuzzy logic is applied [3 marks]